
5. The obtained results permit the following recommendations to be made. 

If the outer radius of the ring b is not very close to R, then the annular shape of the 
electrodes ensures a more uniform temperature field than the disk shape. This result corres- 
ponds to the qualitative evaluations obtained in the study of the current density distribution 
for operation with dc. The "anomalous" effect when b - R is due to the effect of heat transfer 
from the surface, which in our case is considerable. 

Out of the examined annular electrodes, the greatest "uniformity" with optimal current 
is ensured by variant 2 which corresponds to the "mean position" of the ring: a = R/2, b = 
R//Y. 

Table 1 also presents the current densities on the electrodes. It can be seen that the 
current density competes with the level of uniformity of the field, and in the variant that 
is optimal from the point of view of uniformity of the field the current density is greatest 
although it does not exceed the permissible values. 

1. 

2. 

3. 
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REGULAR REGIME IN TRANSLUCENT MATERIALS 

Yu. N. Kryuchkov UDC 536.33:536.241 

The article analyzes radiative-conductive heat transfer in a translucent plate. 
It is established that a regime exists which is analogous to the regular regime 
in conductive heat transfer. 

The question of the existence of regular regimes in translucent materials was dealt with 
by several authors [1-4] but the results of [i, 2] differed substantially from those of [3, 
4]. The authors of the last two articles explained this difference by stating that in [i, 
2] the conductive component of heat transfer was predominant whereas in [3, 4] it was the 
radiative component. However, the authors of [i, 2] investigated the regular regime with 
radiative and convective heat transfer acting in the same direction (radiative and convective 
heating or radiative and convective cooling) whereas in [3, 4] these components were opposed 
to each other (convective heating and radiative cooling). This required additional theoreti- 
cal investigation of the regular regime in a translucent plate where the radiative component 
of heat transfer is equal to or larger than the conductive component, and both act in the 
same direction. 

The difference algorithm for investigating nonsteady radiative-conductive heat exchange 
was constructed in the following manner: the energy equation for an infinitely thin layer 
of a translucent plate with optically smooth surfaces, separated from the opaque surfaces 
by a medium conducting thermal radiation, can be expressed in the form [5] 

C~--OT _ 0 [ A  OT ] Oq r , O~x..~b,J ~ ( 1 )  

where 8qr/ax i s  de termined by the  expres s ion  
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i 1 
Ox ~,,=0 0 

with the initial and boundary conditions 

(la) 
T (x, t = 0) : :  TO (x), 

=~z~(z)(Td, l(~)--Tg,~.(zl)@a ~ [I~(T,~(=))--I~(T,g.~(2Ola~ - - + - - - - I  . (ib) 
Ox x o~) ~o~--o ~ )  (~) ~(~) 

The magnitude 8q r in expression (i) is the differential of the flux density of the result- 
ing radiation. This can be represented as the increase of density of the resulting flux in 
case of emission of radiation by the layer dx and absorption by it of radiation from the en- 
tire bulk of the translucent plate and the opaque surfaces with a view to the multiple reflec- 
tions from the surfaces of the plate and from the opaque surfaces. In this case the entire 
path of the radiation from emission to complete absorption with intermediate reflections is 
traced; therefore there is no need to use the equations of transfer of the radiation and the 
boundary conditions for these equations. 

The multiple reflections of radiation between the translucent and the opaque surfaces 
were taken into account with the aid of the effective reflection factor [2] 

[ 1 - - p ( ~ ,  ~)p ( 2 )  
Pit2) (~, ~)=P(N, ~)+PI(2)( ~, ~) l_Pi(2)(~,  ~)p(~, ~),, 

where the dependence of the reflection factors of the translucent surface p(~, ~) on the angle 
is taken into account by Fresnel's formulas [5]. 

Using the Bouguer--Lambert law of absorption, we can write the expression determining the frac- 
tion of radiationabsorbed bythe layerdx, which propagates with intensity I%,o(B) from the 
surface of the plate to the inside at the angle B, in the form 

dlx (~) = ~,o (~) {exp (-- ~xt~) - -  exp [-- (% + d%)/V]}. (3) 

To establish the dependence of the intensity of the radiation propagating in the plate 
within the limits of the angle 0 5 g ~ ~/2 on the direction, we divide this angle into K parts, 
and in each of them the reflection factor of the surface of the translucent material is aver- 
aged: 

A~I + A~ + . . . + A~ K = ~/2 ,  

where Agl = ~i, A~z = ~2 - ~i; ...; A~K = ~/2 - arcsin(i/nx). Here, A~K is the angle within 
which the reflection factor of the internal radiation from the surface is equal to unity. 

Expression (3) for the k-th solid angle 2~ sin gkAgk is written in the form 

Aq~,k=2aI~,o,h t' ~ exp -- --exp dt*. 

Using the substitution ~' = ~/~k(k-l), we obtain 

i 2 i ' ~ ' [ exp (  "~ ) - - -exp(  " c~+AT~- ) ]d~ ' - -  Aqz 'h .... 2~Ia, 0, h ( p h . l  b ~t  [lh__ 1 �9 pt  PN--1 

' [  ) - ~t~ ! ~*' exp V'l*k , ~'Vh , 

and, finally, 

Aq~,, k .... nl~, o ,h [E~ ('~) --  Ek ( '~+ ATe)] (~-1 --  ~) ,  (4) 

594 



where Ix,0, k is the intensity of the monochromatic radiation propagating from the surface of 
the plate into the bulk and averaged within the limits Agk: 

= ~ ' - -  ~ G [ ' ~  (-c~ + a - ~ ) / ~ ] } / ( . ~ _ ~  - ~). E~ [~ (-~ + Az~)] 2 {~_~ E~ [~ (-~ ~ A~)/~a_~] ~ (5) 

I 

Here E~(%/~)= [ ~'exp(--~x/~'~)d~ is an integroexponential function of third order, determined, 
0 

e.g., after [5]. 

The dependence of the absorption coefficient and of the refractive index on the wave- 
length is taken into account by an exponential approximation of the absorption spectrum of 
the material with averaging of the mentioned values at each j-th step (j = i, 2 ..... m). 
Thus the expression for the density of the radiation flux emitted by an isothermal layer of 
translucent material with thickness Ax in the k-th solid angle and the j-th interval of wave- 
lengths has the form 

Aq~ = 2on]  T;  [1 - -  Eh ( A ~ ) ] ~ h - x  - -  ~ )  Fa.  ( 6 )  

For the sake of lucidity we will consider symmetrical heat transfer with absorption 
factors and conductive thermal conductivity independent of the temperature. We divide the 
thickness of the translucent plate into N theoretical layers (i = i, 2, 3, .... N), but it 
is advisable to take an even number of layers. Then for the i-th theoretical layer we can 
write the explicit two-layer difference analog of Eq. (i): 

where 

~ Ax (T~+ ~ __ Ti)  C7 - - ~  = q~ + q2 + q~ - -  q~, 

q~ = .  A 
Ax (Tz+I --2T~ + T~_l); 

m . K - - 1  
e 2 q~ = oT4p Z F~a ~. (1 - -  9k,i)([xh_, -- ~2)[Eh ('r 5) 

/ = 1  h ~ I  

- -  E h  ('~:., ~+o,  5) + El,  (T:, N - -  "Ci, i + o ,  5) - -  E a  (Ti, N - -  v i ,  ~ - o ,  a)] /[1 - -  p~, i E~, (Ti. N)]; 

(7) 

N / 2  

2F/a ~ T~{[1--E(AwJ)]]Elwi,~-o,5-- q3 = (y n]  

i = t  :=~ 

- - e I + I e - - 

K 

' ~ = :  1 - -  0 ~ , / E h  ( ' 5 ,  N) 

• [Ek ('ci, i -o ,  5) ..... Ek 0::, i+o, 5) + Ek (T/, ~v ---"vi, i+o, s) - -  

-- Eh (~:, N -- ~::. ~-o, s)] [G ('~:, N -- ~:, t ) + E~ (~:.: )]}, 
tYZ 

q~ 2~T: N' 2 : =: n: FA [1 - -  E (ATj)] F~. 
j = l  

>f 

In expression (7), ql is the density of the conductive thermal flow from the layers ad- 
jacent to the theoretical layer; q2 is the density of the radiative thermal flow absorbed 
by the i-th layer with a view to the multiple reflections from the surfaces of the plate and 
from the opaque surfaces. The numerator in the expression q2 determines the absorption of 
radiation in its single passage through the plate, where the expression Ek (~ ~-0 s) - 
Ek(~j,i+0 s) in accordance with formula (4) takes into account the absorptionJof radiation 
from the first opaque surface by the i-th layer, expression Ek(~j, N - Tj,i+ 0 s) - Ek(~j,N - 
Tj,i_0. 5) from the second opaque surface, and the denominator takes into account absorption 
in multiple passages through the plate after reflections from the interfaces. The first part 
of q3 determines the radiation from other theoretical layers (denoted by the subscript f) 
absorbed by the i-th layer before being reflected from the boundaries of the plate, and since 
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Fig. i. Change of the temperature of the 
surface (i) and of the center (2) of a 
glass plate as a function of time. 

the radiation is isotropic, the distribution of the radiation density according to direction 
4 

is not taken into accom:t. Here, expression Tf [i - E(&~j)] in accordance with formula (6) 
determines the amount of energy radiated by the f-th layer and the (N + i - f) layer symmet- 
rical to it, expression IE[~ i-0 s - ~4 f[ - E[Ta i+0 s - ~ f[[ determines the amount of 
energy from the f-th layer agsorbed by ~he i-th layer~ and expression E T4 ~-0 s - T4 ~+l-~l 
E[~j,i+0 s - ~j,N+1-f[l determines the energy from the (N + i - f) layer absorbed by t~e-i-th 
layer. The second part of q3 is the radiation absorbed by the i-th layer from all the theo- 
retical layers including the i-th layer, after multiple reflections from the boundaries (mul- 
tiple absorption is taken into account by the\denominator as in the expression for q2). The 
magnitude of q4 determines the energy radiated by the i-th layer (part of this energy, ab- 
sorbed after multiple reflections by the layer itself, is taken into account in the second 
part of q3). 

The effect of convective and radiative (in the range of opaqueness of the material of 
the plate to thermal radiation) heat transfer on the temperature of the calculated boundary 
layers was determined by the following difference analog of the boundary conditions (ib): 

To = Ti  -~- qsAx/A,  

Tg = 7"~ + 0 .25  (T~ < - r ~ - ~ ) ,  

m 0 4 4 ]O 
4- "~P ~ ( T ~ - - T o ~ F A  p 

q5 = cz ( T r o d - - r g ) - ,  ~.~ '. r ,, ~ - - -  
] --1 1 / S o p  ' 1 0 "  q -  I /~ i - -  1 op - r op 

(8) 

(8a) 

(8b) 

This schema, compared with Schmidt's schema [6], ~nich is used as a rule, is distinguished 
by the more accurate determination of the surface temperature which also corresponds to the 
physical essence of the process of nonsteady heat transfer because in the determination of 
the surface temperature not only the mean temperature of the calculated boundary layer is 
taken into account, but also the temperature gradient in this layer. 

Let us consider symmetrical cooling of a plate of glass with optically smooth surfaces, 
with constant temperature of the air stream flowing around the plate, and opaque interfaces. 
The initial data for calculating according to the algorithm (7)-(8b) with consideration of 
[3, 4] were taken as follows: b = 2"10 -2 m, A = 1.65 W/m'deg, n = 1.5, C7 = 2.5 J/m3"deg, 

= 125 W/m2"deg, ei,jop = 0, Eop,j, k = i, ~(0.25-4.8 pm) = 50 m-l; T(x, t = 0) = 1400~ 
Top = Tmd = 293~ 

Figure I presents the results of the calculation of radiative-conductive heat transfer 
with these data. Since heat transfer was calculated for constant temperatures of the opaque 
surfaces and of the medium, the dependence of the logarithms of the temperatures (dots: cal- 
culated values) on this time are presented in accordance with the theory of regular regime 
[7] instead of the dependence of the temperatures of the surface and of the center of the 
plate on the dimensionless time s 2. The temperature curves in Fig. i are bounded 
by the instant corresponding to a surface temperature of 900~ because when the plate is 
further cooled, its temperature field remains self-similar in time. 

It can be seen from Fig. i that the period of a nonordered nonsteady process is followed 
by the regular regime of first kind (the dashed lines through the calculated values of the 
logarithms of the temperatures of the surface and of the center of the plate are parallel 
to each other). 
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The ratio between the conductive and the radiative components of heat transfer was 
evaluated by the ratio of the density of the conductive thermal flow to the density of the 
radiative thermal flow in the approximation of the diffusion of the radiation with a tempera- 
ture jump as boundary condition (the results of the calculations by this approximation are 
in good agreement with the exact solution in the entire range of optical densities [5]): 

qcond AAT/b 

qrad /(+ an2A (T ~) FA • + 1 ~_ ____i 1 
81,e 82, e 

( 9 )  

where FA and z relate to the range of wavelengths from 0.25 to 4.8 ~m. We linearize the func- 
tion T ~ by expansion into a Taylor series, discard the terms of the expansion of higher orders, 
and change expression (9) into the form 

A (0.75 • -I- - - 1  _]_ _ _ 1  _ 1) 
q coa____~d = ~ ,  e s ~  e , ( 10  ) 

qrad 4anfT3F A b 

where  T i s  t h e  mean t e m p e r a t u r e  o v e r  t h e  c r o s s  s e c t i o n  o f  t h e  p l a t e .  

The r e s u l t s  p r e s e n t e d  in  F i g .  1 e x p r e s s  t h e  s t a t e  o f  t h e  p l a t e  on t h e  s e c t i o n  o f  c o o l i n g  
on which  t h e  r a d i o  q c o n d / q r a d  i s  s m a l l e r  t h a n  0 . 2 5 ,  i . e . ,  t h e  r a d i a t i v e  component  o f  h e a t  
t r a n s f e r  i s  more t h a n  f o u r  t i m e s  l a r g e r  t h a n  t h e  c o n d u c t i v e  componen t .  These  r e s u l t s  d i f f e r  
s u b s t a n t i a l l y  f rom t h e  r e s u l t s  o f  [3 ,  4] where  t h e  r a d i a t i v e  component  o f  h e a t  t r a n s f e r  was 
a l s o  p r e d o m i n a n t .  I t  seems t h a t  t h e  d i f f e r e n t l y  d i r e c t e d  a c t i o n  o f  t h e  c o n v e c t i v e  and t h e  
r a d i a t i v e  componen t s  in  t h e  i n v e s t i g a t i o n  o f  r a d i a t i v e - c o n d u c t i v e  h e a t  e x c h a n g e  unde r  c o n d i -  
t i o n s  o f  r e g u l a r  r e g i m e ,  which  o c c u r r e d  in  t h i s  work ,  makes t h e  o n s e t  o f  t h e  r e g u l a r - r e g i m e  
difficult. 

The results obtained above show that in the investigation of regular regimes in trans- 
lucent materials it is indispensable to take into account the relative mutual direction of 
the convective and the radiative components of heat transfer. 

NOTATION 

qr, flux density of the resulting radiation; %, wavelength at which the material of the 
plate is translucent to radiation; hop, wavelength at which the material of the plate is 
opaque to radiation; I%• ~), intensity of monochromatic radiation in the direction of 
the angle B at the point with the optical coordinate T% = • propagating in the positive 
or negative direction of the x axis; I%(Tgi(2)) and IX(Top ( )i 2 ), Planck's function for the 
temperature of the surfaces of glass and for opaque surfaces; Tmd, temperature of the gase- 
ous medium; ~%, A, C~, and n%, absorption coefficient, thermal conductivity, volume heat cap- 
acity, and refractive index, respectively, of the translucent material; PI(2)( %, 6) and 
0(%, ~), reflection factors of opaque surfaces and of the surface of the plate, respectively; 
gi(2)(%) and g(%), hemispherical emissivities of the opaque surfaces and of the surface of the 
plate, respectively; bx and At, transverse and time steps, respectively, of the calculation 
network; ~, coefficient of convective heat transfer between the plate and the gaseous medium 
washing it; FAJ, fraction of the intensity of absolutely black radiation per interval of 
wavelengths with mean absorption coefficient ~j and refractive index nj in stepped approxima- 
tion of the transparency range of the absorption spectrum of the material of the plate (m 
is the number of steps); FAopJ, fraction of the intensity of absolutely black radiation in 
the opacity range of the material of the plate per interval of wavelengths with mean refractive 
index n jop (m is the number of steps); o, Stefan-Boltzmann constant; E(~) = 2E3(~) and Ek(x), 
functions determining the fraction of radiation transmitted by a layer of translucent material 
with optical thickness r within the limits of the angles 0-~/2 and ARk, respectively; Ti, 
Ti s and Ti s temperature of the i-th layer at the s and (s u l)-th instant; T o , tem- 
perature of a fictitious point situated at the s instant at a distance of 0.5Ax from the 
surface of the plate; Tj,N =~jb, optical thickness of the plate; b, thickness of the plate; 
pk,j e, effective reflection factor averaged within the limits of ASk, taking into account 
multiple reflections of the radiation between the translucent surface and the opaque surface; 
eop,jop and Ejop, hemispherical emissivities of the opaque surface and of the translucent sur- 
face in the range of opaqueness of the material of the plate, averaged over AX. 
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NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN SEMICONDUCTOR DEVICES 

AND STRUCTURES. 

3. MODELING OF MIS STRUCTURES 

I. I. Abramov and V. V. Kharitonov UDC 621.382.82.001:519.95 

A universal algorithm for multidimensional numerical analysis of unipolar semi- 
conductor devices is studied. 

The theoretical study of unipolar semiconductor devices is at the present time most often 
carried out employing numerical models based on the solution of the equations of continuity 
for holes and electrons and Poisson's equation for the electrostatic potential [i]. 

It is sufficient to cite only some works on the multidimensional analysis of MOS transis- 
tors with short channels. Thus in [2, 3] the mechanisms of avalanche breakdown were studied; 
in [4] the effect of the spread in a number of the electrophysical parameters (channel length, 
impurity concentration in the substrate, depth of the p-n junction, etc.) on one of the basic 
parameters - the threshold voltage - was studied; in [5, 6] the effect of adjoining was studied, 
etc. Naturally, the importance of such studies increases with the transition to the submicron 
technology for fabricating integrated circuits because of the complexity of the experimental 
development of such circuits. 

One of the basic difficulties standing in the way of the assimilation of numerical experi- 
ments in practice is the lack of efficient and reliable universal algorithms for the multi- 
dimensional numerical analysis of unipolar semiconductor devices. Thus the most efficient 
algorithms and programs [7, 8], based on Mock's method [9], do not permit carrying out a rigor- 
ous calculation Of devices in prebreakdown operating states [3] and taking into account the 
mechanisms of surface recombination [i0]. This is linked with the fact that in Mock's method 
[9] it is assumed that there is no recombination-generation term in the equation of continuity. 
Algorithms which do not have this drawback either make use of additional physical assumptions 
[ii] or they require supercomputers [12] or they require dense grids in the neighborhood of 
the insulator-semiconductor interface [13]. The latter circumstance, naturally, places the 
problem of selecting a grid at the forefront [14]. 

In this work we propose a universal algorithm for the multidimensional numerical analysis 
of the static states of unipolar semiconductor devices, based on the method of [i] and not 
having the above-mentioned drawbacks. The efficiency of the algorithm is illustrated for the 
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